Biomedical Research Education & Training
Faculty Member

Johnson, Carl H., Ph.D.
Professor of Biological Sciences
Stevenson Professor of Biological Sciences
Professor of Molecular Physiology and Biophysics

Lab Url: http://www.cas.vanderbilt.edu/johnsonlab/

Phone Number: (615) 322-2384

Email Address: carl.h.johnson@vanderbilt.edu

Johnson, Carl's picture
Academic history
B.A., University of Texas at Austin
Ph.D., Stanford University
Postdoc, Harvard University

Office Address   Mailing Address

U-8211 MCN (Learned Labs)

Office @ U-8211 MCN (Learned Labs) Mail @ Box 1634 Sta B 37235


Research Keywords
Circadian, Calcium, Cyanobacteria, Transgenic mice, Cell cycle, Gene regulation, Microbiology, Neuroscience,Bacteria,Biochemistry,Cell cycle,Gene regulation,Genetics,Neuroscience,Phosphorylation,Protein structure,Signal transduction, luciferase,Bacteria,Biochemistry,Cell cycle,Diabetes,Gene regulation,Genetics,Human Genetics,Knockout,Microbiology,Mouse,Neuroscience,Phosphorylation,Polymorphism,Post-transcriptional modification,Protein Structure,Signal transduction,Structural Biology

Research Specialty
Cellular and Molecular Biology of Biological Clocks

Research Description
Organisms and even single cells have endogenous biological "clocks" that allow them to tell the time of day. Research in our laboratory is directed towards understanding the cellular and molecular bases of these fascinating timing mechanisms in a variety of organisms: cyanobacteria ("blue-green algae"), plants, and animals. To analyze the molecular nature of the clock in the prokaryotic cyanobacteria, we have developed a bioluminescent reporter strain that expresses a daily rhythm of light emission. Using this bioluminescence rhythm as a marker, clock mutants have been identified. We found that the essential clock gene, KaiC, is rhythmically expressed and forms ATP-dependent hexamers. In collaboration with the laboratory of Dr. Martin Egli, we have crystallized KaiC to determine its three-dimensional structure and discover its phosphorylation sites. The three key bacterial clock proteins (KaiA + KaiB + KaiC) will show circadian oscillations in a test tube! In collaboration with the laboratories of Drs. Phoebe Stewart and Hassane Mchaourab, we are applying electron microscopic and biophysical methods to explain how these proteins oscillate in vitro. Furthermore, we are using clock mutants of cyanobacteria to provide the first rigorous evidence for the adaptive significance of circadian clocks in fitness.

We also study the neuroscience of the circadian system of mammals. To measure circadian rhythms in brain slices in vitro, we use transgenic mice that express luciferase rhythmically. As a model system, we have also created a fibroblast cell line that is stably transfected with a luciferase reporter and glows rhythmically. Therefore, we use luminescence as a tool to monitor circadian rhythms in the brain. Future studies will focus upon understanding the signal transduction pathway of calcium to the clock and the role of clock genes in the fundamental mammalian clockwork.

We have recently extended our studies to the genetics of the human biological clock. We are examining clock gene polymorphisms in human populations to determine how the neurogenetics of the biological clock affects our ability to adapt to shiftwork cycles and how it can influence mental health (esp. depression). Because daily biological clocks control a myriad of fundamental cellular activities, including cell division, metabolism, gene expression, and ion channel, the elucidation of the timing mechanism will have ramifications for many aspects of temporal regulation, including mental health, cancer, and jet lag.

Finally, we have developed a new method for measuring protein-protein interactions based upon the resonance energy between a luciferase and a fluorescent protein. This method is called Bioluminescence Resonance Energy Transfer, or BRET. This technique has allowed us to develop novel reporters for intracellular calcium and hydrogen ions. We envision a bright future for this technique.

See our laboratory website at: http://www.cas.vanderbilt.edu/johnsonlab/

Publications
Egli, M, Pattanayek, R, Sheehan, JH, Xu, Y, Mori, T, Smith, JA, Johnson, CH. Loop-Loop Interactions Regulate KaiA-Stimulated KaiC Phosphorylation in the Cyanobacterial KaiABC Circadian Clock. Biochemistry, 52(7), 1208-20, 2013

Shi, SQ, Ansari, TS, McGuinness, OP, Wasserman, DH, Johnson, CH. Circadian Disruption Leads to Insulin Resistance and Obesity. Curr Biol, 23, 372-381, 2013

Xu, Y, Ma, P, Shah, P, Rokas, A, Liu, Y, Johnson, CH. Non-optimal codon usage is a mechanism to achieve circadian clock conditionality. Nature, 495(7439), 116-20, 2013

Edgar, R.S., E.W. Green, Y. Zhao, G. van Ooijen, M. Olmedo, X. Qin, Y. Xu, M. Pan, U.K. Valekunja, K.A. Feeney, E.S. Maywood, M.H. Hastings, N.S. Baliga, M. Merrow, A.J. Millar, C.H. Johnson, C.P. Kyriacou, J.S. Oa??Neill, A.B. Reddy. . Peroxiredoxins are conserved markers of circadian rhythms. . Nature, 485, 459-64, 2012

Egli, M, Mori, T, Pattanayek, R, Xu, Y, Qin, X, Johnson, CH. Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Biochemistry, 51(8), 1547-58, 2012

Zhang, Y, Xie, Q, Robertson, JB, Johnson, CH. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH. PLoS One, 7(8), e43072, 2012

Gamble, KL, Motsinger-Reif, AA, Hida, A, Borsetti, HM, Servick, SV, Ciarleglio, CM, Robbins, S, Hicks, J, Carver, K, Hamilton, N, Wells, N, Summar, ML, McMahon, DG, Johnson, CH. Shift work in nurses: contribution of phenotypes and genotypes to adaptation. PLoS One, 6(4), e18395, 2011 PMCID:3076422

Johnson, CH, Stewart, PL, Egli, M. The cyanobacterial circadian system: from biophysics to bioevolution. Annu Rev Biophys, 40, 143-67, 2011 PMCID:3076422

Pattanayek, R, Williams, DR, Rossi, G, Weigand, S, Mori, T, Johnson, CH, Stewart, PL, Egli, M. Combined SAXS/EM based models of the S. elongatus post-translational circadian oscillator and its interactions with the output His-kinase SasA. PLoS One, 6(8), e23697, 2011 PMCID:3161067

Robertson, JB, Johnson, CH. Luminescence as a continuous real-time reporter of promoter activity in yeast undergoing respiratory oscillations or cell division rhythms. Methods Mol Biol, 734, 63-79, 2011 PMCID:3076422

Xie, Q, Soutto, M, Xu, X, Zhang, Y, Johnson, CH. Bioluminescence resonance energy transfer (BRET) imaging in plant seedlings and mammalian cells. Methods Mol Biol, 680, 3-28, 2011 PMCID:3076422

Johnson, CH. Circadian clocks and cell division: What's the pacemaker?. Cell Cycle, 9(19), 2010

Qin, X, Byrne, M, Mori, T, Zou, P, Williams, DR, McHaourab, H, Johnson, CH. Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc Natl Acad Sci U S A, 107(33), 14805-10, 2010

Qin, X, Byrne, M, Xu, Y, Mori, T, Johnson, CH. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol, 8(6), e1000394, 2010 PMCID:2885980

Shi, S, Hida, A, McGuinness, OP, Wasserman, DH, Yamazaki, S, Johnson, CH. Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol, 20(4), 316-21, 2010

J.L. Ditty, S.R. Mackey, C.H. Johnson, editors. Bacterial Circadian Programs. , 333 pages, 2009

Pattanayek, R, Mori, T, Xu, Y, Pattanayek, S, Johnson, CH, Egli, M. Structures of KaiC circadian clock mutant proteins: a new phosphorylation site at T426 and mechanisms of kinase, ATPase and phosphatase. PLoS One, 4(11), e7529, 2009 PMCID:2777353

Robertson, JB, Zhang, Y, Johnson, CH. Light-emitting diode flashlights as effective and inexpensive light sources for fluorescence microscopy. J Microsc, 236(1), 1-4, 2009 PMCID:2778140

Xu, X, Graeff, R, Xie, Q, Gamble, KL, Mori, T, Johnson, CH. Comment on "The Arabidopsis circadian clock incorporates a cADPR-based feedback loop". Science, 326(5950), 230; author reply 230, 2009 PMCID:2778140

Xu, Y, Mori, T, Qin, X, Yan, H, Egli, M, Johnson, CH. Intramolecular regulation of phosphorylation status of the circadian clock protein KaiC. PLoS One, 4(11), e7509, 2009 PMCID:2778140

Ciarleglio, CM, Ryckman, KK, Servick, SV, Hida, A, Robbins, S, Wells, N, Hicks, J, Larson, SA, Wiedermann, JP, Carver, K, Hamilton, N, Kidd, KK, Kidd, JR, Smith, JR, Friedlaender, J, McMahon, DG, Williams, SM, Summar, ML, Johnson, CH. Genetic differences in human circadian clock genes among worldwide populations. J Biol Rhythms, 23(4), 330-40, 2008 PMCID:2579796

Johnson, CH, Egli, M, Stewart, PL. Structural insights into a circadian oscillator. Science, 322(5902), 697-701, 2008 PMCID:2588432

Johnson, CH, Mori, T, Xu, Y. A cyanobacterial circadian clockwork. Curr Biol, 18(17), R816-R825, 2008 PMCID:2585598

Pattanayek, R, Williams, DR, Pattanayek, S, Mori, T, Johnson, CH, Stewart, PL, Egli, M. Structural model of the circadian clock KaiB-KaiC complex and mechanism for modulation of KaiC phosphorylation. EMBO J, 27(12), 1767-78, 2008 PMCID:2435126

Robertson, JB, Stowers, CC, Boczko, E, Johnson, CH. Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. Proc Natl Acad Sci U S A, 105(46), 17988-93, 2008 PMCID:2584751

Vougogiannopoulou, K, Ferandin, Y, Bettayeb, K, Myrianthopoulos, V, Lozach, O, Fan, Y, Johnson, CH, Magiatis, P, Skaltsounis, AL, Mikros, E, Meijer, L. Soluble 3'',6-substituted indirubins with enhanced selectivity toward glycogen synthase kinase -3 alter circadian period. J Med Chem, 51(20), 6421-31, 2008 PMCID:2717725

Bonneau, R, Facciotti, MT, Reiss, DJ, Schmid, AK, Pan, M, Kaur, A, Thorsson, V, Shannon, P, Johnson, MH, Bare, JC, Longabaugh, W, Vuthoori, M, Whitehead, K, Madar, A, Suzuki, L, Mori, T, Chang, DE, Diruggiero, J, Johnson, CH, Hood, L, Baliga, NS. A predictive model for transcriptional control of physiology in a free living cell. Cell, 131(7), 1354-65, 2007

Fan, Y, Hida, A, Anderson, DA, Izumo, M, Johnson, CH. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Curr Biol, 17(13), 1091-100, 2007

Johnson, CH. Bacterial circadian programs. Cold Spring Harb Symp Quant Biol, 72, 395-404, 2007

Mori, T, Williams, DR, Byrne, MO, Qin, X, Egli, M, McHaourab, HS, Stewart, PL, Johnson, CH. Elucidating the Ticking of an In Vitro Circadian Clockwork. PLoS Biol, 5(4), e93, 2007 PMCID:1831719

Woelfle, MA, Xu, Y, Qin, X, Johnson, CH. Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci U S A, 104(47), 18819-24, 2007 PMCID:2141860

Xu, X, Hotta, CT, Dodd, AN, Love, J, Sharrock, R, Lee, YW, Xie, Q, Johnson, CH, Webb, AA. Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis. Plant Cell, 19(11), 3474-90, 2007 PMCID:2174886

Xu, X, Soutto, M, Xie, Q, Servick, S, Subramanian, C, von Arnim, AG, Johnson, CH. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A, 104(24), 10264-9, 2007 PMCID:1891211

Izumo, M, Sato, TR, Straume, M, Johnson, CH. Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Comput Biol, 2(10), e136, 2006 PMCID:1599765

Johnson, C.H.. Reminiscences from Pittendrigh's last Ph.D. student. Resonance, 11, 22-31, 2006

Johnson, C.H., R. Shingles, and W.F. Ettinger. Regulation and role of Ca++ fluxes in the chloroplast. In: The Structure and Function of Plastids, Chapter 20, 23, 403-416, 2006

Johnson, C.H., and S.S. Golden. Circadian Rhythms in Cyanobacteria. In: Nature Encyclopedia of Life Sciences, Nature Publishing Group, London: www.els.net, 2006

Pattanayek, R, Williams, DR, Pattanayek, S, Xu, Y, Mori, T, Johnson, CH, Stewart, PL, Egli, M. Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. EMBO J, 25(9), 2017-28, 2006 PMCID:1456936

Subramanian, C, Woo, J, Cai, X, Xu, X, Servick, S, Johnson, CH, Nebenf??hr, A, von Arnim, AG. A suite of tools and application notes for in vivo protein interaction assays using bioluminescence resonance energy transfer (BRET). Plant J, 48(1), 138-52, 2006

Woelfle, MA, Johnson, CH. No promoter left behind: global circadian gene expression in cyanobacteria. J Biol Rhythms, 21(6), 419-31, 2006

Johnson, C.H. Testing the adaptive value of circadian systems. Methods in Enzymology, 393, 818-837, 2005

Johnson, C.H. and C.P. Kyriacou. Clock evolution and adaptation: whence and whither?. In: Endogenous Plant Rhythms (Chapter 10), 237-260, 2005

Johnson, CH. Testing the adaptive value of circadian systems. Methods Enzymol, 393, 818-37, 2005

Mittag, M, Kiaulehn, S, Johnson, CH. The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to. Plant Physiol, 137(2), 399-409, 2005 PMCID:1065344

Soutto M., Y. Xu, and C. H. Johnson. Bioluminescence RET (BRET): techniques and potential. In: Molecular Imaging: FRET Microscopy and Spectroscopy, 260-271, 2005

Johnson, C.H.. As time glows by in bacteria. Nature , 430(1), 23-24, 2004

Johnson, C.H. and M. Egli. Visualizing a biological clockwork's cogs. Nature Structural and Molecular Biology, 11(7), 584-585, 2004

Johnson, Carl Hirschie. Precise circadian clocks in prokaryotic cyanobacteria. Curr Issues Mol Biol, 6(2), 103-10, 2004

Johnson, Carl Hirschie. Global orchestration of gene expression by the biological clock of cyanobacteria. Genome Biol, 5(4), 217, 2004 PMCID:395776

Min, H, Liu, Y, Johnson, CH, Golden, SS. Phase determination of circadian gene expression in Synechococcus elongatus PCC 7942. J Biol Rhythms, 19(2), 103-12, 2004

Pattanayek, R, Wang, J, Mori, T, Xu, Y, Johnson, CH, Egli, M. Visualizing a circadian clock protein: crystal structure of KaiC and functional insights. Mol Cell, 15(3), 375-88, 2004

Subramanian, C, Kim, BH, Lyssenko, NN, Xu, X, Johnson, CH, von Arnim, AG. The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. Proc Natl Acad Sci U S A, 101(17), 6798-802, 2004 PMCID:404125

Subramanian, C, Xu, Y, Johnson, CH, von Arnim, AG. In vivo detection of protein-protein interaction in plant cells using BRET. Methods Mol Biol, 284, 271-86, 2004

Woelfle, MA, Ouyang, Y, Phanvijhitsiri, K, Johnson, CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol, 14(16), 1481-6, 2004

Xu, Y, Mori, T, Pattanayek, R, Pattanayek, S, Egli, M, Johnson, CH. Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses. Proc Natl Acad Sci U S A, 101(38), 13933-8, 2004 PMCID:518856

Hastings, JW, Johnson, CH. Bioluminescence and chemiluminescence. Methods Enzymol, 360, 75-104, 2003

Izumo, Mariko, Johnson, Carl Hirschie, Yamazaki, Shin. Circadian gene expression in mammalian fibroblasts revealed by real-time luminescence reporting: temperature compensation and damping. Proc Natl Acad Sci U S A, 100(26), 16089-94, 2003 PMCID:307697

Johnson, Carl Hirschie, Elliott, Jeffrey A, Foster, Russell. Entrainment of circadian programs. Chronobiol Int, 20(5), 741-74, 2003

Schoenhard, John A, Smith, Layton H, Painter, Corrie A, Eren, Mesut, Johnson, Carl H, Vaughan, Douglas E. Regulation of the PAI-1 promoter by circadian clock components: differential activation by BMAL1 and BMAL2. J Mol Cell Cardiol, 35, 473-81, 2003

Xu, Yao, Kanauchi, Akihito, von Arnim, Albrecht G, Piston, David W, Johnson, Carl Hirschie. Bioluminescence resonance energy transfer: monitoring protein-protein interactions in living cells. Methods Enzymol, 360, 289-301, 2003

Xu, Yao, Mori, Tetsuya, Johnson, Carl Hirschie. Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J, 22, 2117-26, 2003 PMCID:156062

Mori, T., and C.H. Johnson. Circadian control of cell division in unicellular organisms. In: Progress in Cell Cycle Research, Volume 4. L. Meijer, A. Jezequel, an dB. Ducommun, eds. (Kluwer Academic/Plenum Press, N.Y.), pp. 185-192, 2002.

Xu, Y., A. Kanauchi, D.W. Piston, and C.H. Johnson. Resonance energy transfer as an emerging technique for monitoring protein-protein interactions in vivo: BRET vs. FRET. In: Luminescence BioTechnology, K. Van Dyke, C. Van Dyke and K. Woodfork, eds. (CRC Press, N.Y.), pp. 529-538, 2002.

Mori, Tetsuya, Saveliev, Sergei V, Xu, Yao, Stafford, Walter F, Cox, Michael M, Inman, Ross B, Johnson, Carl H. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA. Proc Natl Acad Sci U S A, 99, 17203-8, 2002 PMCID:139293

Sai, Jiqing, Johnson, Carl Hirschie. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell, 14, 1279-91, 2002 PMCID:150780

Schoenhard, John A, Eren, Mesut, Johnson, Carl H, Vaughan, Douglas E. Alternative splicing yields novel BMAL2 variants: tissue distribution and functional characterization. Am J Physiol Cell Physiol, 283, C103-14, 2002

Suzuki, Lena, Johnson, Carl Hirschie. Photoperiodic control of germination in the unicell Chlamydomonas. Naturwissenschaften, 89, 214-20, 2002

Xu, Yao, Johnson, Carl Hirschie, Piston, David. Bioluminescence resonance energy transfer assays for protein-protein interactions in living cells. Methods Mol Biol, 183, 121-33, 2002

Dassarma, S, Kennedy, SP, Berquist, B, Victor Ng, W, Baliga, NS, Spudich, JL, Krebs, MP, Eisen, JA, Johnson, CH, Hood, L. Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynth Res, 70(1), 3-17, 2001

Johnson, C H. Endogenous timekeepers in photosynthetic organisms. Annu Rev Physiol, 63, 695-728, 2001

Mori, T, Johnson, C H. Circadian programming in cyanobacteria. Semin Cell Dev Biol, 12, 271-8, 2001

Mori, T, Johnson, C H. Independence of circadian timing from cell division in cyanobacteria. J Bacteriol, 183, 2439-44, 2001 PMCID:95159

Xu, Y, Johnson, C H. A clock- and light-regulated gene that links the circadian oscillator to LHCB gene expression. Plant Cell, 13, 1411-25, 2001 PMCID:135572

Mori, T, Johnson, C H. Circadian control of cell division in unicellular organisms. Prog Cell Cycle Res, 4, 185-92, 2000

Nikaido, S S, Johnson, C H. Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol, 71(6), 758-65, 2000

Xu, Y, Mori, T, Johnson, C H. Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. EMBO J, 19(13), 3349-57, 2000 PMCID:313937

Johnson, C H. Forty years of PRCs--what have we learned. Chronobiol Int, 16(6), 711-43, 1999

Johnson, C H, Golden, S S. Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol, 53, 389-409, 1999

Sai, J, Johnson, C H. Different circadian oscillators control Ca(2+) fluxes and lhcb gene expression. Proc Natl Acad Sci U S A, 96(20), 11659-63, 1999 PMCID:18090

Xu, Y, Piston, D W, Johnson, C H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A, 96(1), 151-6, 1999 PMCID:15108

Johnson, C.H., M. Knight, A. Trewavas, and T. Kondo. A clockwork green: circadian programs in photosynthetic organisms. Chapter 1 in: Biological Rhythms and Photoperiodism in Plants. P. Lumsden and A. Millar, eds. (BIOS Scientific Publishers, Oxford), pp. 1-34, 1998.

Golden, SS, Johnson, CH, Kondo, T. The cyanobacterial circadian system: a clock apart. Curr Opin Microbiol, 1(6), 669-73, 1998

Ishiura, M, Kutsuna, S, Aoki, S, Iwasaki, H, Andersson, CR, Tanabe, A, Golden, SS, Johnson, CH, Kondo, T. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science, 281(5382), 1519-23, 1998

Johnson, C H, Golden, S S, Kondo, T. Adaptive significance of circadian programs in cyanobacteria. Trends Microbiol, 6(10), 407-10, 1998

Ouyang, Y, Andersson, C R, Kondo, T, Golden, S S, Johnson, C H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A, 95(15), 8660-4, 1998 PMCID:21132

Golden, Susan S., Ishiura, Masahiro, Johnson, Carl Hirschie, Kondo, Takao. CYANOBACTERIAL CIRCADIAN RHYTHMS. Annu Rev Plant Physiol Plant Mol Biol, 48, 327-354, 1997

Jacobshagen, S, Kindle, K L, Johnson, C H. Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. Plant Mol Biol, 31(6), 1173-84, 1996

Johnson, C H, Golden, S S, Ishiura, M, Kondo, T. Circadian clocks in prokaryotes. Mol Microbiol, 21(1), 5-11, 1996

Liu, Y, Tsinoremas, N F, Golden, S S, Kondo, T, Johnson, C H. Circadian expression of genes involved in the purine biosynthetic pathway of the cyanobacterium Synechococcus sp. strain PCC 7942. Mol Microbiol, 20(5), 1071-81, 1996

Mori, T, Binder, B, Johnson, CH. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci U S A, 93(19), 10183-8, 1996 PMCID:38358

Tsinoremas, NF, Ishiura, M, Kondo, T, Andersson, CR, Tanaka, K, Takahashi, H, Johnson, CH, Golden, SS. A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. EMBO J, 15(10), 2488-95, 1996 PMCID:450181

Goto, K, Johnson, CH. Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol, 129(4), 1061-9, 1995 PMCID:2120501

Johnson, C H, Knight, M R, Kondo, T, Masson, P, Sedbrook, J, Haley, A, Trewavas, A. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science, 269(5232), 1863-5, 1995

Liu, Y, Golden, S S, Kondo, T, Ishiura, M, Johnson, C H. Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J Bacteriol, 177(8), 2080-6, 1995 PMCID:176852

Liu, Y, Tsinoremas, N F, Johnson, C H, Lebedeva, N V, Golden, S S, Ishiura, M, Kondo, T. Circadian orchestration of gene expression in cyanobacteria. Genes Dev, 9(12), 1469-78, 1995

Jacobshagen, S, Johnson, C H. Circadian rhythms of gene expression in Chlamydomonas reinhardtii: circadian cycling of mRNA abundances of cab II, and possibly of beta-tubulin and cytochrome c. Eur J Cell Biol, 64(1), 142-52, 1994

Johnson, C H. Illuminating the clock: circadian photobiology. Semin Cell Biol, 5(5), 355-62, 1994

Johnson, C H, Nakaoka, Y, Miwa, I. The effects of altering extracellular potassium ion concentration on the membrane potential and circadian clock of Paramecium bursaria. J Exp Biol, 197, 295-308, 1994

Kondo, T, Tsinoremas, NF, Golden, SS, Johnson, CH, Kutsuna, S, Ishiura, M. Circadian clock mutants of cyanobacteria. Science, 266(5188), 1233-6, 1994

Kondo, T, Strayer, CA, Kulkarni, RD, Taylor, W, Ishiura, M, Golden, SS, Johnson, CH. Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci U S A, 90(12), 5672-6, 1993 PMCID:46783

Johnson, C H, Kondo, T. Light pulses induce 'singular' behavior and shorten the period of the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. J Biol Rhythms, 7(4), 313-27, 1992

Johnson, CH, Kondo, T, Hastings, JW. Action Spectrum for Resetting the Circadian Phototaxis Rhythm in the CW15 Strain of Chlamydomonas: II. Illuminated Cells. Plant Physiol, 97(3), 1122-1129, 1991 PMCID:1081131

Kondo, T, Johnson, CH, Hastings, JW. Action Spectrum for Resetting the Circadian Phototaxis Rhythm in the CW15 Strain of Chlamydomonas: I. Cells in Darkness. Plant Physiol, 95(1), 197-205, 1991 PMCID:1077506

Johnson, C. H. An Atlas of Phase Response Curves for Circadian and Circatidal Rhythms. Dept. of Biology, Vanderbilt University, 715 pages, 1990.

Johnson, C H, Nakashima, H. Cycloheximide inhibits light-induced phase shifting of the circadian clock in Neurospora. J Biol Rhythms, 5(2), 159-67, 1990

Broda, H, Johnson, CH, Taylor, WR, Hastings, JW. Temperature dependence of phase response curves for drug-induced phase shifts. J Biol Rhythms, 4(3), 327-33, 1989

Johnson, C H, Hastings, J W. Circadian phototransduction: phase resetting and frequency of the circadian clock of Gonyaulax cells in red light. J Biol Rhythms, 4(4), 417-37, 1989

Johnson, C H, Miwa, I, Kondo, T, Hastings, J W. Circadian rhythm of photoaccumulation in Paramecium bursaria. J Biol Rhythms, 4(4), 405-15, 1989

Nicolas, MT, Nicolas, G, Johnson, CH, Bassot, JM, Hastings, JW. Characterization of the bioluminescent organelles in Gonyaulax polyedra (dinoflagellates) after fast-freeze fixation and antiluciferase immunogold staining. J Cell Biol, 105(2), 723-35, 1987 PMCID:2114768

Olesiak, W, Ungar, A, Johnson, CH, Hastings, JW. Are protein synthesis inhibition and phase shifting of the circadian clock in Gonyaulax correlated. J Biol Rhythms, 2(2), 121-38, 1987

Johnson, C. H., and J. W. Hastings. The elusive mechanism of circadian clocks. American Scientist 74: 29-36, 1986.

Dube, F., T. Schmidt, C. H. Johnson, and D. Epel. The hierarchy of requirements for an elevated intracellular pH during early development of sea urchin embryos. CELL 40: 657-666, 1985.

Johnson, CH, Inou??, S, Flint, A, Hastings, JW. Compartmentalization of algal bioluminescence: autofluorescence of bioluminescent particles in the dinoflagellate Gonyaulax as studied with image-intensified video microscopy and flow cytometry. J Cell Biol, 100(5), 1435-46, 1985 PMCID:2113859

Nicolas, MT, Johnson, CH, Bassot, JM, Hastings, JW. Immunogold labeling of organelles in the bioluminescent dinoflagellate Gonyaulax polyedra with anti-luciferase antibody. Cell Biol Int Rep, 9(9), 797-802, 1985

Johnson, C. H., J. F. Roeber, and J. W. Hastings. Circadian changes of enzyme concentration account for rhythm of enzyme activity in Gonyaulax. Science 223: 1428-1430, 1984.

Johnson, C. H. Changes of intracellular pH are not correlated with the circadian rhythm of Neurospora. Plant Physiol. 72: 129-133, 1983.


Postdoctoral Position Available
Yes

Postdoctoral Position Details
One Postdoctoral Position is available January 1, 2013:

Innovative Luminescence Assay for Synaptic Activity, [Ca++], and pH: My laboratory has developed a new technique for monitoring protein-protein interactions (Bioluminescence Resonance Energy Transfer, or BRET). This technique has significant advantages over two-hybrid screens or FRET methods. We developed this technique for assessing interactions among circadian clock proteins (i.e., biological clock proteins) in bacteria (PNAS 96: 151-156, 1998) and have adapted it to imaging in mammalian cells and plants (PNAS 104: 10264-10269, 2007). We have developed a BRET reporter for pH (PLoS ONE 7: e43072, 2012) and BRET reporters for [Ca++] are under development. The current position is to further develop this state-of-the art technique, and apply it as a non-invasive monitor of neural synaptic activity. Experience with imaging and standard molecular genetic techniques is desirable.


There are excellent facilities and collaborations available within the Vanderbilt University system, including other laboratories that study circadian clocks & sleep (e.g., the labs of Doug McMahon, Terry Page, and Beth Malow) and/or that are developing advanced imaging techniques (e.g., David Piston). Nashville is an exciting city with a low cost of living and many artistic opportunities (especially music) as well as close proximity to nature. For more information about my laboratory, see our website: http://www.cas.vanderbilt.edu/johnsonlab/. Interested applicants should contact Dr. Carl Johnson at: carl.h.johnson@vanderbilt.edu.

Updated Date
03/21/2013